Pes Planovalgus
Tibialis Posterior Tendon Dysfunction
stadium II

Therapeutic choices

Medializing Calcaneal osteotomy

Versus

Lengthening Calcaneal Osteotomy

Dr de Halleux Jacques
GENOA, december 2th 2015
Tibialis Posterior Insufficiency

<table>
<thead>
<tr>
<th>Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcaneum</td>
<td>Valgus</td>
</tr>
<tr>
<td>Subtalar joint</td>
<td>Tilted medially</td>
</tr>
<tr>
<td>Talus</td>
<td>Medially and down</td>
</tr>
<tr>
<td>T-N and N-C</td>
<td>Subluxation</td>
</tr>
<tr>
<td>Midtarsal joints</td>
<td>Abduct + supination</td>
</tr>
</tbody>
</table>

- Valgus hindfoot
- Achilles T = Evertor
STAGES
tibialis posterior dysfunction

- **Stage 1**
 - **A**: inflammation, no deformation
 - **B**: partial PTT tear, no deformation
 - **C**: partial PTT tear, little hindfoot valgus

- **Stage 2 = SUPPLE**
 - **A**: valgus hindfoot; (<50% uncovering TN)
 - **B**: forefoot supination flexible; (>50% uncovering TN)
 - **C**: A or B with forefoot supination fixed
 - **D**: Forefoot abduction
 - **E**: medial column (TN, NC, CMT) stability

- **Stage 3 = RIGID**
 - **A**: Hindfoot valgus
 - **B**: Forefoot abduction

- **Stage 4**
 - **A**: reducible ankle valgus
 - **B**: rigid ankle valgus (more common presentation)

PLANUS VALGUS ABDUCTUS SUPINATION MEDIAL COLUMN

complex problem that has multiple treatment options

Myerson, JBJS Am, 1996

Hill K, Foot Ankle Clin. 2003. 8(1):91-104
BONE PROCEDURES

MEDIALIZATION CALCANEAL OSTEOTOMY (KOUTSOGIANNIS, MYERSON)
MALERBA CALCANEAL OSTEOTOMY
SILVER CALCANEAL OSTEOTOMY

LATERAL LENGHTENING OSTEOTOMY
LATERAL LENGHTENING CALCANEAL-CUBOIDAL ARTHRODESIS

SUBTALAR ARTHRODESIS
SUBTALAR ARTHROERESIS
TALO-NAVICULAR ARTHRODESIS

MEDIAL COLUMN RESTORATION
COTTON CUNEIFORM 1 OSTEOTOMY
PLANTAR FLEXION MT1 OSTEOTOMY
ARTHRODESIS NAVICULO-CUNEIFORM 123
ARTHRODESIS TARSO-MT1

SOFT TISSUE PROCEDURES

TIBIALIS POSTERIOR RECONSTRUCTION
SUTURE
TRANSFER (TFDL OR FDC; COB TECHNIQUE)
SPRING LIGAMENT RECONSTRUCTION
ACHILLES TENDON LENGHTENING
MEDIALIZING CALCANEAL OSTEOTOMY
MCO
(valgus correction)

Koutsogiannis. JBJS. Febr 1971
MEDIALIZING CALCANEAL OSTEOTOMY
MCO
(valgus correction)

Line of weight-bearing transmitted through the talus medial to the calcaneus
SURGICAL TECHNIQUE MCO

Lateral incision (parallel and behind peroneal tendon) sural n!

Osteotomy // skin incision

MEDIAl TRANSLATION POSTERIOR PART
CALCANEUM
(1/3 to ½ of the width of the calcaneus)
1- TREATMENT of AQUIRED FLATFOOT

 = Association of different procedures that impact hindfoot alignment
 (MCO, LCL, TMT fusion, reconstruction PTT + spring ligament …)

 Main Predictor of hindfoot valgus alignment correction = MCO
 (others: much lesser effect)

2- LINEAR RELATIONSHIP between:

 - amount of MCO displacement
 - correction hindfoot alignment
3- HINDFOOT MOMENT ARM

- Help surgeon to titrate the amount of correction

- 0 - 5 mm varus = greatest clinical improvement *

Comparison of Three Different Fixation Methods of Calcaneal Osteotomies

Ali Abbasi, FRCS(Tr&Orth), Razi Zaidi, MRCS, Abhijit Guha, FRCS(Tr&Orth), Andrew Goldberg, FRCS(Tr&Orth), Nicholas Cullen, FRCS(Tr&Orth), and Dishan Singh FRCS(Tr&Orth)

MCO FIXATION = 1 headless screw

- 2 headless screws: no better result
- Headed screw: 30-50% removal
- Lateral plate: more non-union
Medial Displacement Calcaneal Osteotomy Using Minimally Invasive Technique

Ehab Kheir, FRCS Tr&Orth¹, Vishal Borse, MRCS¹, Jon Sharpe, FRCR²,
David Lavalette, FRCS Tr&Orth¹, and Mark Farndon, FRCS Tr&Orth¹

- Good results
- No non-union
- N = 30
MCO Correction of:

- Valgus
- Eversion force of the Achilles tendon
- Medial arch + Forefoot abduction
 = only if no severe flatfoot

MCO alone not enough!
Suture / Z lengthening

Transfert
FDL-FHL
Tib ant (Cobb)

RECONSTRUCTION PTT

RECONSTRUCTION SPRING LIGAMENT

OSTEOTOMY - ARTHRODESIS

LCL, Cotton, MT1

N-C, T-MT
RESULTS

MCO + FDL transfert

<table>
<thead>
<tr>
<th>Myerson M S *</th>
</tr>
</thead>
<tbody>
<tr>
<td>n: 32</td>
</tr>
<tr>
<td>mean age : 58 y</td>
</tr>
<tr>
<td>FU : 20 months (14 to 48)</td>
</tr>
<tr>
<td>results : AOFAS score 48 to 84</td>
</tr>
<tr>
<td>94% pain relief, improvement arch of the foot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wacker J T **</th>
</tr>
</thead>
<tbody>
<tr>
<td>n : 44</td>
</tr>
<tr>
<td>mean age 61 y</td>
</tr>
<tr>
<td>FU : 51 months (38 to 62)</td>
</tr>
<tr>
<td>results : AOFAS score 48 to 88,5</td>
</tr>
<tr>
<td>95% pain relief</td>
</tr>
<tr>
<td>80% improvement arch of the foot</td>
</tr>
</tbody>
</table>

* Myerson MS, Orthopedics. 19:383-8,1996
** Wacker JT, JBJS. 84-B : 54-8, 2002
CALCANEAL OSTEOTOMY:
Lateral column lengthening

St IID : forefoot abduction
Correction of:

- **Medial arch height** *

 not because F Pl tightness ***

- **Forefoot abduction** *

 improve coverage Talar head by Navicular

- **Hindfoot valgus** *

Side effect:

- **Lateral forefoot plantar pressure ↑** *

 simultaneous procedure medially

* Evans D, Calcaneo-valgus deformity. JBJSBr. 1975;57-B(3):270-278

** Benthien et al, Foot Ankle International.2007;28(1):70-77

calcaneo-cuboidal osteoarthritis

Evans : 65% at 13 years follow-up
Mosier-Laclair : 14% at 5 years follow-up *

Alternative = calcaneocuboïd distraction arthrodesis

- less motion hindfoot,
 (loss subtalar motion of 18 to 30% and loss TN of 40%**)
- increasing arthritis hind and midfoot

•Mosier-Laclair, Foot Ankle Clinic (6):95-119, 2001 Mar
** Deland J et al, Foot Ankle.16(11) , 1995
Table 1. The Calcaneocuboid Joint Peak Pressures Under 7 Conditions With Vertical Loads of 350 N (kg/cm², x ± s, n= 6)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Peak Pressure Across the CC Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact foot</td>
<td>9.21 ± 1.60</td>
</tr>
<tr>
<td>Flatfoot</td>
<td>24.90 ± 2.45</td>
</tr>
<tr>
<td>Corrected with 4 mm LCL</td>
<td>21.68 ± 2.21</td>
</tr>
<tr>
<td>Corrected with 6 mm LCL</td>
<td>15.95 ± 2.59</td>
</tr>
<tr>
<td>Corrected with 8 mm LCL</td>
<td>11.04 ± 1.15</td>
</tr>
<tr>
<td>Corrected with 10 mm LCL</td>
<td>15.20 ± 2.35</td>
</tr>
<tr>
<td>Corrected with 12 mm LCL</td>
<td>21.55 ± 2.03</td>
</tr>
</tbody>
</table>

CC, calcaneocuboid; LCL, lateral column lengthening.

LCL with 8 mm trapezoidal grafts

Cadaveric study
Linear relationship:
- Graft size (Lengthening LCL)
- Correction forefoot abduction

(measured by the RX lateral incongruency angle)

helpfull for surgeon to titrate the proper amount of correction

Figure 5. A linear regression model for the amount of LCL performed in relation to the change in lateral incongruency angle is shown. The model demonstrates a significant positive correlation between LCL and the correction in forefoot abduction ($P = .001$). Each additional millimeter of lengthening performed corresponded to a 6.8 degree change in lateral incongruency angle.
Majority of publications = trapezoidal graft

Rectangular graft

Better bony realignment = Better flatfoot deformity correction
(more graft volume medially)
(Intraarticular TN pressure: trapezoidal = rectangular)

Article

Effect of Graft Shape in Lateral Column Lengthening on Tarsal Bone Position and Subtalar and Talonavicular Contact Pressure in a Cadaveric Flatfoot Model

Sean T. Campbell, MD, Keri A. Reese, MD, Steven D. Ross, MD, Michelle H. McGarry, MS, Thu-Ba Leba, MD, and Thay Q. Lee, PhD
If double osteotomy performed: Prior MCO or Prior LCL?

- Performing MCO prior to the LCL osteotomy

 Risk of overcorrection (cfr additional hindfoot inversion)

- Performing LCL osteotomy prior to MCO

 Reduce risk of overcorrection
- **LCL osteotomy**
 (autologous tricortical bone block, T-plate)
- Reinsertion Post. tib.
- FDL transfer to navicular
- Reconstruction Spring ligament
- Gastroc-slide/lengthening
N=112 feet
FU 2 years n101 feet
58,2y

Talo-MT1 normalized
Post Tib insufficiency improved
VAS FA improved
Pedography normalized

9% wound healing delay

Association
- LCL
- reconstructionTib Post + Spr
Lig
- Ach T lengthening

safe and predictable technique
Flatfoot correction
(Abducto-Plano-Valgus)
CONCLUSION

- Posterior Tibialis Tendon Dysfunction St II
 =
 Complex problem
 multiple therapeutic options

- MCO or LCL = not to be used alone
 Need for Additional procedures
 depending on the deformations
Thanks
TIBIALIS POSTERIOR TENDON

- Inversion of the heel
- Adduction forefoot
- Plantar flexion of the Ankle
Inversion of the heel
Adduction forefoot
Plantar flexion of the Ankle

Tibialis posterior tendon
DIAGNOSIS

- tibialis posterior dysfunction

- flattening longitudinal arch
DIAGNOSIS

tibialis posterior dysfunction

- valgus of the hindfoot
DIAGNOSIS
tibialis posterior dysfunction

- abduction of the mid and forefoot
- „too-many-toes sign“
DIAGNOSIS

tibialis posterior dysfunction

single-heel rise test

Normal Tib Post
DIAGNOSIS

tibialis posterior dysfunction

„single-heel-rise test“
STAGES

tibialis posterior dysfunction

<table>
<thead>
<tr>
<th></th>
<th>stage 1</th>
<th>stage 2</th>
<th>stage 3</th>
<th>stage 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>retromalleolar pain</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>hindfoot valgus</td>
<td>(+/-)</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>arch flattening</td>
<td>(+/-)</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>forefoot supination</td>
<td>(+/-)</td>
<td>(+)</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>forefoot abduction</td>
<td>(+/-)</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>deformity</td>
<td>supple</td>
<td>supple</td>
<td>rigid</td>
<td>rigid</td>
</tr>
<tr>
<td>Ankle pain</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
</tbody>
</table>

Stages 1, 2, 3 = Johnson and Strom, Clin Orthop, 1989

Stage 4 = Myerson, JBJS Am, 1996
Posterior Tibial Tendon Dysfunction St II
TREATMENT

complex problem that has multiple treatment options *
- Valgus hindfoot?
- Forefoot abduction?
- Forefoot supination?
- Medial column instability?
- Spring ligament?
- Tibialis posterior?
- Achilles tendon?

* Hill K, Foot Ankle Clin. 8(1):91-104, 2003 Mar
Posterior Tibial Tendon Dysfunction
Stage 1

- retromalleolar pain
- X Ray Normal
- Stages A: inflammation, no deformation
 - B: partial PTT tear, no deformation
 - C: partial PTT tear, little hindfoot valgus

Tenosynovitis or partial rupture

Haddad St, Myerson MS and al, Foot and Ankle Int, 2011, Jan.
Supple pes plano valgus

- A: valgus hindfoot (<50% uncovering TN)
- B: forefoot supination flexible (>50% uncovering TN)
- C: A or B with forefoot supination fixed
- D: Forefoot abduction
- E: medial column (TN, NC, CMT) instability

Posterior Tibial Tendon Dysfunction

Stage 2

Elongation, tendinosis

(partial) rupture

Haddad St, Myerson MS and al, Foot and Ankle Int, 2011, Jan.
Posterior Tibial Tendon Dysfunction

Stage 3

- Rigid pes plano valgus
 - A: Hindfoot valgus
 - B: Forefoot abduction

More advanced course of tendon rupture

Haddad St, Myerson MS and al, Foot and Ankle Int, 2011, jan
1893: medial closing wedge (Gleich)

1967: lateral opening wedge (Silver)

MEDIAlIZING CALCANEAL OSTEOTOMY
MCO (Koutsogiannis. JBJS. Febr 1971)
(valgus correction)
CALCANEAL OSTEOTOMY
(valgus correction)

MEDIAL TRANSLATION POSTERIOR PART CALCANEUM

(1/3 to ½ of the width of the calcaneus; 1 cm)
CALCANEAL OSTEOTOMY
(valgus correction)
LATERAL OPENING WEDGE OSTEOTOMY

2005 : Z osteotomy (Malerba)

pictures from: Th Leemrijse, B Valtin, Pathologie du Pied et de la cheville, 2009
MALERBA OSTEOTOMY
Lateral *opening* wedge osteotomy

picture from: Th Leemrijse, B Valtin, Pathologie du Pied et de la cheville, 2009
TIBIALIS POSTERIOR RECONSTRUCTION: suture
TENDON RECONSTRUCTION: Z-lengthening
TENDON RECONSTRUCTION:
FHL or FDC transfert

Tibialis posterior

FDC
TENDON RECONSTRUCTION
WITH TIBIALIS ANTERIOR
COBB TECHNIQUE

restore plantar flexion power of the 1st ray
(more distal insertion of the Tib Ant)
supple forefoot supination St IIB

COBB TECHNIQUE

Knupp M, Hintermann B

- n = 22 PTT dysfunction st IIB
- FU : 24 months
- results : AOFAS score 53.2 to 88.5
 excellent / good results : 95 %
 no decreasing Force of TA

- Cobb technique = apropriate alternative to arthrodesis
 in st II B PTT dysfunction (in addition with other technique)
LIGAMENT RECONSTRUCTION
spring ligament suture
RESULTS
MCO + LCL + FDL transfert (Mosier-Laclair**)

- Satisfaction rate high
- No medial arch restauration in all patients
- Cc arthritis 14%

** Mosier-Laclair, Foot and Ankle Clinic, Mar 2001: (6):95-119;
Posterior Tibial Tendon Dysfunction

Stage 4

- Rigid pes plano valgus
- Lateral ankle pain

- A: reductible ankle valgus
- B: rigid ankle valgus (more common presentation)

rupture

ankle arthrosis

Myerson MS and al, Foot and Ankle Int, 2011, Jan
Posterior Tibial Tendon Dysfunction

TREATMENT

Stage 1

- conservative
 - physiotherapy
 - shoe corrections
 - medial support

Surgery?

Ténosynovectomy?
LCL osteotomy correct
- Majority of the hindfoot valgus deformity
- While also correct the midfoot deformity
Posterior Tibial Tendon Dysfunction Stage II

Treatment

SURGICAL

- Calcaneal osteotomy
 (=> valgus : MCO and others (Silver, Malherba...))
 (=> abd midfoot : LCL lateral column lengthening)
- Arthrodesis
 (=> abd forefoot : lateral column lengthening)
 (=> supp forefoot : medial column)
- Tendon reconstruction
 (suture, plasty, transfert FHL or FDC, Cobb)
- Ligament reconstruction
 (spring ligament)
- Others
 (Achilles tendon lengthening, TN arthrodesis,
 subtalar arthrodesis, subtalar arthroereisis, medial
 cuneiform osteotomy, 1st MT osteotomy)
RESULTS
CC arthrodesis + PTT repair + Achilles tendon lengthening (Lauwerens, 2006)

- N = 20; FU = 24 months
- 85% complete relief of pain
- 10% nonunion
- 15% sural nerve damage

RIGID FOREFOOT SUPINATION?
STADIUM II C

• Arthrodesis naviculo-cuneiform 123 *
• Arthrodesis 1st tarso-metatarsal
• Cotton osteotomy (plantar flexion opening wedge cun 1)**
• Plantar flexion osteotomy MT1

• Alastair Younger, Foot Ankle Int. 32 (1) : 101-3, 2011
** Hirose CB, Foot Ankle Int. 25 : 568-74, 2004
Stephen J Pinney, Foot Ankle Int, 27 (1) : 66-75, 2006 jan
Posterior Tibial Tendon Dysfunction

Treatment

- Stage 3
 - A: + Medial transl calc ost
 - B: + lenght lat column

- surgical
 - triple arthrodeses
Posterior Tibial Tendon Dysfunction Treatment

- Stage 4

Surgical*

A: ankle soft tissue repair + Triple Arthrodesis
B: Panarthrodesis / TTC arthrodesis

*Bluman EM, Myerson MS, Foot Ankle Clinic, 12(2): 341-62, 2007
Posterior Tibial Tendon Dysfunction TREATMENT

CONCLUSION

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>II / III</th>
<th>III / IV</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>conservative</td>
<td>MTCO</td>
<td>PTT repair</td>
<td>spring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>synovectomy</td>
<td></td>
<td>ligament</td>
<td>Medial</td>
<td>Lateral</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>column</td>
<td>arthrodesis</td>
<td>ankle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTC desis</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>pain</td>
<td>PTT inflam; no deform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>part PTT tear; no deform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>part PTT tear; little valgus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>supple PPV</td>
<td>calc valgus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>supple forefoot supp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>rigid forefoot supp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>forefoot abd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>mdl column instability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>rigid PPV</td>
<td>calc valgus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>forefoot abd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>ankle valgus</td>
<td>supple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>rigid</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Posterior Tibial Tendon Dysfunction

CONCLUSION

• Good physical examination
• Good treatment indication
• Good results
Linear relationship:
- LCL graft size
- Correction forefoot abduction

(measured by the RX lateral incongruency angle)

helpfull for surgeon to titrate the proper amount of correction
What kind of graft shape?

Rectangular graft (no trapezoidal)

- better bony realignment = better flatfoot deformity correction (more graft volume medially)
- Intraarticular TN pressure: trapezoidal = rectangular

Article

Effect of Graft Shape in Lateral Column Lengthening on Tarsal Bone Position and Subtalar and Talonavicular Contact Pressure in a Cadaveric Flatfoot Model

Sean T. Campbell, MD, Keri A. Reese, MD, Steven D. Ross, MD, Michelle H. McGarry, MS, Thu-Ba Leba, MD, and Thay Q. Lee, PhD
- Tibialis Posterior Dysfunction St II
 =
 Complex problem
 multiple therapeutic options

- MCO or LCL = not to be used alone
 Additional procedures mandatory
 depending on the deformations

- Displacement :
 - MCO = Hindfoot moment arm = 0-5 mm varus
 - LCL = 0,8 cm

- Double Osteotomy: LCL prior to the MCO
 avoid overcorrection